Random Walk Initialization for Training Very Deep Feedforward Networks
نویسندگان
چکیده
Training very deep networks is an important open problem in machine learning. One of many difficulties is that the norm of the back-propagated error gradient can grow or decay exponentially. Here we show that training very deep feed-forward networks (FFNs) is not as difficult as previously thought. Unlike when backpropagation is applied to a recurrent network, application to an FFN amounts to multiplying the error gradient by a different random matrix at each layer. We show that the successive application of correctly scaled random matrices to an initial vector results in a random walk of the log of the norm of the resulting vectors, and we compute the scaling that makes this walk unbiased. The variance of the random walk grows only linearly with network depth and is inversely proportional to the size of each layer. Practically, this implies a gradient whose log-norm scales with the square root of the network depth and shows that the vanishing gradient problem can be mitigated by increasing the width of the layers. Mathematical analyses and experimental results using stochastic gradient descent to optimize tasks related to the MNIST and TIMIT datasets are provided to support these claims. Equations for the optimal matrix scaling are provided for the linear and ReLU cases.
منابع مشابه
Adding Gradient Noise Improves Learning for Very Deep Networks
Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. A major reason for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than m...
متن کاملWhere Do Features Come From?
It is possible to learn multiple layers of non-linear features by backpropagating error derivatives through a feedforward neural network. This is a very effective learning procedure when there is a huge amount of labeled training data, but for many learning tasks very few labeled examples are available. In an effort to overcome the need for labeled data, several different generative models were...
متن کاملUnderstanding the difficulty of training deep feedforward neural networks
Whereas before 2006 it appears that deep multilayer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better ...
متن کاملThe Shattered Gradients Problem: If resnets are the answer, then what is the question?
A long-standing obstacle to progress in deep learning is the problem of vanishing and exploding gradients. Although, the problem has largely been overcome via carefully constructed initializations and batch normalization, architectures incorporating skip-connections such as highway and resnets perform much better than standard feedforward architectures despite wellchosen initialization and batc...
متن کاملOn the importance of initialization and momentum in deep learning
Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful models that were considered to be almost impossible to train using stochastic gradient descent with momentum. In this paper, we show that when stochastic gradient descent with momentum uses a well-designed random initialization and a particular type of slowly increasing schedule for the momentum parameter, it can train...
متن کامل